
NASA / CR-1998-208434

Flight Guidance System Validation using
SPIN

Dimitri Naydich and John Nowakowski

Odyssey Research Associates, Ithaca, NY

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS1-20335

June 1998

Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171
(703) 487-4650

Atmtraet

To verify the requirements for the mode control logic of a Flight Guidance System (FGS) we
applied SPIN, a widely used software package that supports the formal verification of distributed

systems. These requirements, collectively called the FGS specification, were developed at
Rockwell Avionics & Communications and expressed in terms of the Consortium Requirements

Engineering (CORE) method. The properties to be verified are the invariants formulated in the

FGS specification, along with the standard properties of consistency and completeness. The

project had two stages. First, the FGS specification and the properties to be verified were
reformulated in PROMELA, the input language of SPIN. This involved a semantics issue, as

some constructs of the FGS specification do not have well-defined semantics in CORE. Then we

attempted to verify the requirements' properties using the automatic model checking facilities of
SPIN. Due to the large size of the state space of the FGS specification an exhaustive state space

analysis with SPIN turned out to be impossible. So we used the supertrace model checking
procedure of SPIN that provides for a partial analysis of the state space. During this process, we

found some subtle errors in the FGS specification.

TableofContents

ABSTRACT ... 1

TABLE OF CONTENTS ... 2

LIST OF FIGURES .. 4

1 INTRODUCTION .. 6

2 FGS SPECIFICATION: AN OVERVIEW .. 7

2.1 STANDARD CORE FEATURES .. 7

2.1.1 Tables .. 7
2.1.2 Partial functions .. 8

2.1.3 Invariants .. 9
2.2 NON-STANDARD FEATURES .. 10

2.2.1 Event Cascading .. 10
2.2.2 Continuous Events .. 12
2.2.3 Sustaining Conditions For Modes ... 12

3 TRANSLATING FGS SPECIFICATION TO PROMELA: TRANSLATION PRIMITIVES .. 13

3. l TRANSLATIONOUTLINE .. 13
3.2 SICNAL DECLARATIONS.. 14

3.2.1 Monitored Variables ... 15

3.2.2 Modes and Terms .. 15
3.2.3 Controlled Variables ... 16

3.2.4 Event Identifiers and Event-observable Expressions .. 16
3.2.5 Durations ... 17
3.2.6 General Structure ... 17

3.3 SIGNAL INITIALIZATION.. 17
3.3.1 Input Signals .. 18

3.3.2 Initially Defined Signals ... 19
3.3.3 Initially Undefined Signals ... 20
3.3.4 General Structure ... 20

3.4 EXPRESSIONTRANSLATION.. 21

3.4.1 Event Expressions .. 21
3.4.2 Duration Expressions .. 22

3.4.3 General Expressions .. 22
3.5 TABLE TRANSLATION.. 22

4 TRANSLATING FGS SPECIFICATION TO PROMELA: SIMULATION CYCLE 24

4.1 FGSM_I .. 24
4.2 FGSM_II ... 24

4.2.1
4.2.2

4.2.3
4.2.4

4.2.5
4.2.6

4.2.7
4.3

Updating Complex Event-observable Expressions ... 25

Checking on the Changes of Complex Event-obset vable Expressions 25
Checking on the Absence of Internal Events .. 26

Calculating New Values for Internal Signals and Event Identifiers 26
Checking on the Changes of Internal Signals ... 28

Updating Input Signals and Internal Signals ... 28
General Format of FGSM_II ... 28

FGSM_III ... 29

2

4.4 FGSM_IV ... 29

4.5 FGSM: GENERAL FORMAT ... 30

5 FORMALIZING THE REQUIRED PROPERTIES ... 31

5.1 COMPLETENESS ... 3 l

5.2 CONSISTENCY .. 31

5.3 INVARIANTS ... 31

5.4 UNREACHABLE TRANSITIONS .. 32

5.5 STUTTERING .. 32

6 STATE SPACE REDUCTION .. 33

6.1.1 The Supertrace Algorithm ... 33

6.1.2 Multiple Hashing .. 33

6.1.3 Using dstep Statements ... 33

6.1.4 Input Variable Abstraction .. 34

7 VALIDATION RESULTS ... 36

7.1.1 Typos .. 36

7.1.2 Unreachable Transitions ... 36

7.1.3 Invariant Violations .. 37

8 CONCLUSION ... 40

8.1 PROJECT RESULTS ... 40

8.2 DIRECTIONS FOR FUTURE WORK ... 40

REFERENCES ... 42

APPENDIX .. 44

Ust of Figures

FIGURE 1: A SELECTOR TABLE .. 7

FIGURE 2: A CONDITION TABLE ... 8

FIGURE 3: AN EVENT TABLE .. 8

FIGURE 4: A MODE TRANSITION TABLE ... 8

FIGURE 5: INmAL VALUE AND SUSTAINING CONDITION OF MODE_ACTIVE_LATERAL 9

FIGURE 6" DEFAULT INITIAL VALUE AND SUSTAINING CONDITION CONFIGURATION 9

FIGURE 7: INVARIANTS OF THE FGS SPECIFICATION ... 10

FIGURE 8: ACTIVE LATERAL MODE TRANSITION TABLE ... 11

FIGURE 9: ACTIVE VERTICAL MODE TRANSITION TABLE .. 11

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE 25:

FIGURE 26:

FIGURE 27:

FIGURE 28:

FIGURE 29:

FIGURE 30:

FIGURE 31 :

FIGURE 32:

FIGURE 33:

FIGURE 34:

FIGURE 35:

FIGURE 36:

FIGURE 37:

FIGURE 38:

FIGURE 39:

FIGURE 40:

FIGURE 41:

FIGURE 42:

FIGURE 43:

FIGURE 44:

FIGURE 45:

FIGURE 46:

FIGURE 47:

FIGURE 48:

FIGURE 49:

FIGURE 50:

FIGURE 51 :

10: DEFINITION OF AN EVENT IDENTIFIER ... 13

11 : DEFINITION OF TERM_OVERSPEED .. 13

12: EXAMPLE OF AN EVENT-OBSERVABLE EXPRESSION .. 14

13: DECLARATIONS OF INPUT SIGNALS ... 15

14: DECLARATIONS OF INTERNAL SIGNALS ... 16

15: DEFINITION OF CONVERTICAL_ARM_COLOR .. 16

16: DECLARATIONS OF CONTROLLED VARIABLES ... 16

17: DECLARATIONS OF EVENT IDENTIFIERS AND EVENT-OBSERVABLE EXPRESSIONS 17

18: AUTOPILOT DISENGAGE SUBMODE TRANSITION TABLE ... 17

19: DECLARATION OF A DURATION VARIABLE .. 17

20: GENERAL STRUCTURE OF SIGNAL DECLARATIONS .. 17

21: RANDOM NUMBER GENERATION ... 19

22: INPUT SIGNAL INITIALIZATION ..] 9

23: INITIALIZING NON-INPUT SIGNALS .. 20

24: INITIALIZING SIGNALS WITH UNDEFINED VALUE ... 20

GENERAL STRUCTURE OF SIGNAL INITIALIZATIONS .. 21

TRANSLATING EVENTS .. 21

EQUIVALENT EVENTS .. 21

TRANSLATING CONTEXTS WITH COMPLEX EVENT EXPRESSIONS ... 22

GENERIC CORE FUNCTION TABLE .. 22

TRANSLATION OF THE GENERIC CoRE FUNCTION TABI.E ... 23

GENERAL FORMAT OF FGSM_I .. 24

UPDATING A COMPLEX EVENT-OBSERVABLE EXPRESSION .. 25

CHECKING ON THE CHANGES OF COMPLEX EVENT-OBS_RVABLE EXPRESSIONS 26

CHECKING ON THE ABSENCE OF INTERNAL EVENTS .. 26

CALCULATING THE NEW VALUE FOR AN INTERNAL EVFNT-OBSERVABLE SIGNAL 27

REPRESENTING A SUSTAINING CONDITION ... 27

CALCULATING NEW VALUE FOR AN INTERNAL SIGNAL _VITH NO OBSERVABLE EVENTS 28

CHECKING THE STABILITY OF THE INTERNAL SIGNALS ... 28

UPDATING INPUT SIGNALS AND INTERNAL SIGNALS ... 28

GENERAL FORMAT OF FGSM_II .. 29

GENERAL FORMAT OF FGSM_III ... 29

GENERAL FORMAT OF FGSM_IV .. 30

GENERAL FORMAT OF FGSM ... 30

REPRESENTATION OF A CONDITION TABLE .. 31

CHECKING ON CONSISTENCY OF A CONDITION TABLE ... 31

INVARIANT TRANSLATION .. 32

MODE_OVERSPEED TRANSITION TABLE .. 34

MODIFIED MODE_OVERSPEED TRANSITION TABLE .. 35

INPUT SIGNAL RANGE MODIFICATIONS .. 35

TYPOS DETECTED .. 36

FLIGHT LEVEL CHANGE SUBMODE TRANSITION TABLE .. 36

FIGURE 52: DEFINITION OF TERM_SELECTED NAV_TYPE .. 37

FIGURE 53: DEFINITION OF @NAV SOURCE_CHANGE .. 38

FIGURE 54: MODIFIED DEFINITION OF @NAV_SOURCE_CHANGE ... 38

FIGURE 55: ALTITUDE SELECT ENABLED SUBMODE TRANSITION TABLE .. 38

FIGURE 56: AN ERROR TRACE .. 39

FIGURE 57: A PROGRAM TRACE ... 44

1 Introduction

The mode control logic of the Flight Guidance System (FGS) specified at Rockwell Avionics &

Communications [1] is a realistic example of an industrial problem that is compact enough to be a

test case for formal design methods. The flight modes determine the mechanisms generating the
pitch and roll commands guiding the aircraft. Because of its complexity, an accurate description

of the mode control logic is considered a significant problem [2], and it is interesting to see how it
can benefit from the application of formal methods.

The mode control logic has been specified using the Consortium Requirements Engineering

(CORE) method [3]. The result is called the FGS specification. The CoRE method supports
specifying behavioral system requirements using convenient formal notation with simple and

well-defined semantics. A designed system satisfies the CoRE requirements if its variables

behave in accordance with the requirement specification. As with any formal theory, the general
important properties of the FGS specification are consistency and completeness. The consistency

of requirements means the existence of a system satisfying them. The completeness of
requirements means that the systems satisfying them exhibit the same variable behavior. Other

important required properties are expressed as invariants. An invariant is a condition on variable

values that should hold for any system satisfying the requin_.ments at any time. Finally, we search
for unreachable mode transitions, which correspond to code in our executable specification that is
never executed.

Although the CoRE semantics is well defined, CoRE does not provide a tool for verifying the

properties mentioned above. It is interesting, therefore, to reformulate the FGS specification in

another specification formalism that does have mechanical validation support. We have applied
SPIN [6,8], a widely used software package supporting the formal verification of distributed

systems, to the validation of the mode control logic requirements. To do this, we had to

reformulate the FGS specification and the required properties in PROMELA, the input language
of SPIN. The reformulation involved a semantics issue, as rome constructs of the FGS

specification do not have well-defined semantics in CORE. Then we used the automatic model-

checking facility of SPIN, either to validate the required properties or to generate the simulation
traces violating them.

The state space of the FGS specification is large. The specification contains about 30 input

variables, some of them with thousands of possible values, and about 60 internal state-holding
variables related by complex control dependencies. To mal,:e model checking feasible, we
abstracted away certain irrelevant state information.

The report consists of six parts. Chapter 2 presents an over_1iew of the FGS specification.
Chapters 3 and 4 describe the translation of the FGS specification to PROMELA. We describe

the representation of the FGS specification properties to be verified in Chapter 5. In Chapter 6,
we describe the state space reduction techniques we used to make model checking feasible. We

present the validation results obtained with SPIN in Chapte_ 7.

2 FGS Specification: An Overview

The FGS specification is written in an informal extension of CORE. The standard CoRE features

of the FGS specification are presented in Section 2.1. The extension features are presented in
Section 2.2.

2.1 Standard CoRE Features

The CoRE behavioral model of a system specifies system variables as functions of continuous
time. A specified system is generally considered as a set of mutually interacting finite state

machines triggered by events; the events in CoRE track changes of expression values in time.

The CoRE class model structures the behavior model in an object-oriented way.

The system's state information is stored in its intemal variables. Some variables like modes store

their previous state values as well. In general, any variable defined by an event table (see Section

2.1.1) holds some state information. The FGS is very complex. There are about 30 mode
variables in the FGS specification, representing flight director modes, lateral flight modes, and

vertical flight modes; and there are roughly 30 other internal variables. There are 30 input
variables, including both binary variables and variables, like the flight altitude, with thousands of

possible values. The system variables are related by complicated control logic.

2.1.1 Tables

Tables are commonly used to represent variable behavior functions in CORE. There are three

types of tables: selector tables, condition tables and event tables. A selector table is a tabular
representation of strictly mode-dependent information. For example, consider variable

con_HDG_Switch_Lamp, controlling an indicator lamp. The selector table defining its value is

shown in Figure 1. According to the table, the value of con_l-IDG_Switeh_Lamp is Lit if
mode_Flight_Director is ON, and mode_Active_Vertical is HDG; it is Unlit under all the other

possible combinations of the mode values.

ModeFlight_Director
OFF

ON

Modes

Mode_Active_Vertical

N/A

HDG

ROLL
NAV

APPR

GA

Con_HDG_Switch_Lamp
Unlit
Lit

Unlit

Figure 1: A selector table

A condition table represents a function of the mode variables and a set of mutually exclusive

conditions. For example, consider variable con_AP_Engage_Switch_Lamp, controlling another
indicator lamp. The condition table defining its value is shown in Figure 2. According to this

table, the value of con_AP_Engage_Switch_Lamp in any mode is Unlit if term_AP_Engaged
is False; it is Lit if term_AP_Engaged is True.

7

Mode Conditions

All Modes NOT term AP Engaged term_AP_Engaged

con_AP_Engage_Switch_Lamp Unlit Lit

Figure 2: A condition table

An event table represents a function that is updated only when an event occurs. Event tables are

used to specify variables whose values depend on the system's history. For example, consider

variable term_Selected_Heading, representing the heading set by rotation of the heading knob.
The event table defining its value is shown in Figure 3. According to this table,
term_Selected_Heading assumes a new value, which depends on its current value, whenever the
event @I-lDG_Knob_Changed occurs.

Mode Events

All Modes @HDG_Knob_Changed

term_Selected_Heading MOD(term_Selected_Heading' + 1 degree *
term_HDG_Knob Rotation, 360 degrees)

Figure 3: An event table

A mode transition table is a special form of an event table that specifies the behavior of a mode
variable having a finite value range. For example, consider submode ENGAGED of mode

mode_Autopilot. The mode transition table defining its value is shown in Figure 4. It specifies
that the submode's value changes from Normal to Sync only when term_SYNC becomes true; it
changes back when term_SYNC becomes false.

Id From Events To

9 Normal @T(term_SYNC) Sync

10 Sync @F(term_SYNC) Normal

Figure 4: A mode transition table

2.1.2 Partial functions

Tables in CoRE represent total functions. To represent a partial function in CORE, the

specification uses a total "value" function, along with a sustaining condition that specifies the

domain of the partial function. The value of a partial function is undefined when the sustaining
condition does not hold. When the sustaining condition hol,_, the partial function is equal to the

value function, except for the moments when the sustaining condition becomes true. Sustaining
condition are provided with initial values. At the moment the sustaining condition becomes true,

the value of the partial function is set to the initial value. Fc,r example, the initial value and

sustaining condition of mode_Active_Lateral is shown in Figure 5.

InitialValue: ROLL

SustainingCondition: mode_Flight_Director= ON

Figure 5: Initial value and sustaining condition of mode_Active Lateral

Figure 6 shows the initial value and sustaining condition of con_HDG_Switch_Lamp. "None"
means that the sustaining condition is tautologically true; "value function" means the function

specified by the selector table, Figure 1.

Initial Value: see value function

Sustaining Condition: none

Figure 6: Default initial value and sustaining condition configuration

2.1.3 Invariants

The invariants imposed on the FGS specification are listed in Figure 7. For example, invariant

INV-1 is as follows: Mode_Active_Lateral = GA _ mode_Autopilot = DISENGAGED.

Thus, the FGS specification asserts that the Autopilot must always be disengaged when the Active
Lateral mode machine is in Go Around mode.

INV-1 mode_Active_Lateral= GA_ mode_Autopilot=DISENGAGED

INV-2 mode_Active_Vertical= GA=:>mode_Autopilc,t = DISENGAGED

INV-3 term AP Engaged_ mode_Flight_Director= ON

INV-4 (mode_Active_Lateral= ROLLA menOn Greund)_ mode_Active_Lateral=
ROLL/Hdg_Hold

INV-5 mode_Active_Vertical= GA=_mode_Active_Lateral= GA

INV-6 mode_Active_Lateral= NAV/Track_ term_Selected_Nav_Typee {VOR,LOC,
FMS}

INV-7 modeActive_Lateral= APPR/Track:=_term_Selected_Nav_Typee {LOC,FMS}

INV-8 mode_Altitude_Select= CLEARED¢:_mode_Active_Verticale {APPR,GA,
ALTHOLD}

INV-9 mode_Altitude_Select= ACTIVE ¢_ mode_ActiveVertical = ALTSEL

INV-10 mode_Vertical_Approach = TRACK ¢=_mode_Active_Vertical = APPR

INV-11 term_Overspeed :=_ mode_Active_Vertical e {ALTSEL, ALTHOLD, APPR,
FLC/Overspeed }

INV-12 mode_Active_Lateral = GA _ mode_Active_V,_rtical = GA

Figure 7: lnvariants of the FGS Specification

2.2 Non-Standard Features

To model flight mode logic, the developers of the FGS spe,_ification relied on three concepts that

have no analogues in the CoRE framework: event cascading, continuous events, and partially
defined internal variables. The developers of the FGS specification extended the CoRE notation

to express these concepts, and described the intended semaatics informally.

2.2.1 Event Gascading

Event cascading defines a conceptual sequencing of events that are simultaneous in real time.

Consider the lateral and vertical mode transition tables shown in Figure 8 and Figure 9.

Id From

20 HDG

21 NAV

22 NAV

23 APPR

24 APPR

25 GA

26

27

Events

@HDG_Switch_Pressed

@NAV_Switch_Pressed

@Nav_Source_Change

@APPR_Switch_Pressed

@Nav_Source_Change

@T(term_AP_Engaged)

GA @T(term_SYNC)

GA @F(mode_Active_Vertical = GA)

ROLL

ROLL

ROLL

ROLL

ROLL

ROLL

ROLL

ROLL

To

10

@HDG_Switch_Pressed HDG28

29

30

31

HDG

NAV

APPR

@NAV_Switch_Pressed

@APPR_Switch_Pressed

NAV

APPR

GA @GA_Pressed GA

Figure 8: Active lateral mode transition table

From Events To

GA @T(term_SYNC) PITCH

@ VS_Pitch_Wheel_Changed PITCH

Id

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

VS OR

APPR OR

ALTSEL OR

PITCH

ALTSEL @T(mode_Altitude_Select = ACTIVE) ALTSEL

ALTSEL @ CHANGED(term_Preselected_Altitude) PITCH
WHEN modeAltitude_Select = ACTIVE/Capture

ALTSEL @ CHANGED(term_Preselected_Altitude) ALTHOLD

WHEN mode_Altitude_Select = ACTIVE/Track

APPR OR @ALT_Switch_Pressed ALTHOLD
ALTHOLD

ALTHOLD @ALT Switch_Pressed PITCH

APPR OR VS

VS

VS

APPR OR
FLC

FLC

ALTSEL OR
ALTHOLD OR

APPR OR FLC

@VS_Switch_Pressed

@VS_Switch_Pressed

@FLC_Switch_Pressed

@FLC_Switch_Pressed

CONTINUOUSLY WHEN term_Overspeed

PITCH

FLC

PITCH

FLC

APPR @T(mode_Vertical_Approach = TRACK) APPR

APPR @F(mode_Vertical_Approach = TRACK) PITCH
AND NOT @GA_pressed

GA @GA_Pressed GA
PITCHGA @T(term AP Engaged)

GA @F(mode_Active_Lateral = GA) PITCH

,ure 9: Active vertical mode transition tableFi

Suppose the values of mode_Active_Lateral and mode_Active_Vertical at time t are equal to
GA. Let external event @HDG_Switch_Pressed happen at this time. Then transition 28, Figure

8, instantly changes the value of mode_Active_Lateral to HDG. This transition invokes internal
event @F(mode_Active_Lateral = GA) that triggers transition 57, Figure 9, to change the value

of mode_Active_Vertical to PITCH. Analogously, let external event
@VS_Pitch_Wheel_Changed happen at time t. Then transition 42, Figure 9, changes the value
of mode_Active_Vertical from GA to PITCH. This invokes internal event

@F(mode_Aetive_Vertical = GA) that triggers transition 27, Figure 8, to change the value of
mode_Active_Lateral to ROLL. Transitions 27 and 57 are introduced to comply with the

invariants INV-5 and INV-12, Figure 7.

11

Within the transition cascading model it is important to distinguish the causal relations between

simultaneous events. This gives us a criterion to disambig_aate mode transition tables with respect
to simultaneous events in a causal sequence. CoRE has no such mechanism, and, as a result, the
Active Lateral and Vertical Mode Transition Tables are inconsistent in CORE. To show the

inconsistency, we proceed with the sequence of internal events caused by
@HDG_Switeh_Pressed. mode_Active_Vertical going to PITCH further invokes internal

event @F(mode_Aetive_Vertical = GA) to happen simultaneously with
@HDG_Switeh_Pressed. Taking into consideration that mode_Active_Lateral is GA at that

time, we get transition 27 triggered simultaneously with transition 28. Thus we get inconsistency
within the CoRE interpretation. However, within the transition cascading model, transition 27

cannot happen because @F(mode_Aetive_Vertical = GAI occurs causally later than
@I-IDG_Switch_Pressed, and mode_Active_Lateral is already HDG by then.

The developers of the FGS specification are aware that CoRE semantics does not permit

transition cascading. However, they do not formalize their transition cascading semantics, which

makes our problem of formal analysis not completely defined. We define a transition cascading
mechanism for CoRE event tables in Section 4.2, similar to the one used in RSML [9], VHDL

[10], or Verilog [11] formalisms. A reasonable alternative would be to specify the flight mode
logic in one of these formalisms, as they are in some ways more adequate to the problem domain,
and are equipped with advanced analysis tools, e.g., [4, 7, 5, 12].

2.2.2 Continuous Events

Transition 52, Figure 9, is triggered by a continuous event, another non-standard feature of the

FGS specification. It means that the transition from the source to the target takes place whenever
condition term_Overspeed is true. The semantics of continuous events is very straightforward in
our event cascading model (see Section 3.4.1)

2.2.3 Sustaining Conditions For Modes

In CORE, sustaining conditions are considered just for controlled, output variables. The purpose

of such conditions is to detect when the values of output variables are trustworthy. Sustaining
conditions for internal variables like mode_Active_Lateral presented in Figure 5 are not legal in

CORE. In general, considering undefined values of interna; variables raises the problem of
evaluating expressions over such variables. For example, given an integer variable x, what is the

value of expression x 20 v x c0 when x is undefined? Fortunately, the potentially undefined

internal variables in the FGS specification are evaluated in domains that make a simple semantics
of undefined values possible (see Section 3.3).

12

3 Translating FGS specification to PROMELA:
Translation Primitives

3.1 Translation Outline

PROMELA is the input language of SPIN. Since our goal is to apply SPIN to the analysis of the

FGS specification, we have to reformulate the specification in PROMELA. PROMELA is meant
for specifying protocols, which are communication rules for entities exchanging messages over

point-to-point channels. A basic event in the PROMELA model is sending/receiving a message.

The problem domain of PROMELA is very different from the FGS (and CORE) problem domain,
so we have to model all the concepts involved from scratch. We use the term signals for CoRE
monitored variables, controlled variables, modes, and terms in order to distinguish them from

PROMELA variables. We represent the concept of event--the change of a signal value in
continuous time--by introducing two variables, to hold its current and previous values. For

example, Figure 10 shows a CoRE definition of an event identifier. We represent the identified
event @T(mon_HDG_Switch = ON) as the PROMELA expression

mon_HDG_Switch[current]&& (I mon_HDG_Switch[previous]),

where mon_HDG_Switch is a two-element array indexed by the constants current and previous.

@HDG_Switch_Pressed: event = @T(mon_HDG_Switch = ON)

Figure 10: Definition of an event identifier

Event broadcasting is the mechanism for triggering the flight mode transitions in the distributed
CoRE specification. Formalizing event broadcasting in PROMELA requires a complicated

system of process synchronization (see the Appendix). Such an explicit synchronization would
have to be modified whenever the CoRE specification was modified, and could become a source

of additional errors. To avoid this problem, we translated the distributed CoRE specification into

a single initial PROMELA process.

The signals in the FGS specification are supposed to be concurrently updated, and they are
mutually dependent in general. To simulate concurrent updating of mutually dependent signals by

sequential PROMELA code, we introduce an extra variable for each signal to hold its new value.

The new value of such a signal depends at most on the current and previous values of other
signals. When all the new values for mutually dependent signals are calculated, these signals are

updated. Thus, the sequential order of calculating new values and updating mutually dependent

signals becomes irrelevant, which adequately simulates the desired concurrency. For example,
consider the following CoRE definition of an internal signal, shown in Figure 11.

term_Overspeed: boolean = mode_Overspeed = TOO_FAST

Figure 11:Definition of term_Overspeed

The PROMELA code that computes the new value for this signal is as follows:

terrn_Overspeed[new]= mode_Overspeed[current]==TOO_FAST.

13

The resulting target code quite resembles a C program, as PROMELA has adopted a C-like

syntax. Our translation makes no use of the PROMELA constructs that model communicating
processes. The only construct used in the translation that has no semantics in C is the non-

deterministic if-statement. The restricted form of non-deterministic if-statement that we use has
the following syntax:

if
::condition_l-> statement_l

...

::conditionn -> statement_n
::else -> statement
fi

To execute this statement, the conditions are evaluated ftrst, and then some statement following a
valid condition is non-deterministically chosen and executed. The statement corresponding to the

else branch is executed if none of the conditions is valid. We omit a condition if it is trivially
true. We omit the else branch if we believe that one of the conditions is true each time the if-
statement is executed.

3.2 Signal Declarations

Regarding the signal representation in PROMELA, we distinguish event-observable signals and
expressions from the other signals and expressions used in the FGS specification. An event-
observable expression is a CoRE expression expr that either occurs in an event expression

@T(expr), @F(expr), or CHANGED(expr), or is a sustaining condition expression used in the

specification. For example, consider the definition of @FD_Pressed, shown in Figure 12.

@FD_Pressed: event - @T(mon_FD_Switch<left> = ON or mon FD Switch<fight> = ON)

Figure 12: Example of an event-observable expression

The expression mon_FD_Switch<left> = ON or mon_FD Switch<right> = ON is event-

observable. Expression mode_Flight_Director = ON is a sustaining condition of
mode_Active_Lateral (see Figure 5) and other modes, and, therefore, it is event-observable too.

An event-observable signal is a signal occurring in an event-observable expression depending just
on this signal. For example, signal term_SYNC is event-observable because event

@T(term_SYNC) triggers transition 26 (see Figure 8). On the other hand, input signal
mort_Indicated_Airspeed, has no event-observable in the _pecification.

We also distinguish between input, output and internal signals. Input signals are those not

assigned to in the specification; output signals are those not used in computing signal values; and

all the other signals are internal. All the monitored variables of the FGS specification are input
signals; almost all the controlled variables are output signal:_ (see Section 3.2.3); the mode and

term variables are internal signals. Signals within each of these groups are updated concurrently.
The updating of input or output signals is easily represented by sequential code since neither

class of signals contains mutual dependencies. Internal sigrLals are mutually dependent in

general. To simulate concurrent updating of mutually dependent signals by sequential code, we
introduce an extra variable for each signal to hold its new value, as discussed in Section 3.1.

Signal declarations in PROMELA are defined according to the signal classification above:

14

1. We declare an input event-observable signal as a two-element array that holds its previous
and current values.

2. We declare the other external signals as plain (i.e., non-array) variables.

3. We declare an internal event-observable signal as a three-element array that holds its

previous, current, and new value.

4. We declare the other internal signals as two-element arrays that hold their current and new

values. We declare an output signal as a regular variable.

We introduce a new two-element array identifier for every non-primitive event-observable

expression, to hold its previous and current values. Such an identifier does not correspond to a

physical signal, but rather is a shorthand notation making the calculation of complex expression
events easier. We consider event identifiers of the FGS specification as shorthand too, and we

declare them as plain binary variables. We also introduce auxiliary variables for counting the

duration of staying in a particular state. The rest of this section provides examples of signal
declarations.

3.2.1 Monitored Variables

Consider binary input signal mon_HDG_Switch, which describes the position of a flight control
panel button. This is an event-observable signal (see Figure 10). The PROMELA declaration of

this signal is presented in Figure 13. PROMELA variable mon_HDG_Switeh[current] holds the
current value of mon_I-IDG_Switch, and mon_HDG_Switch[previous] holds the previous value of

mon_l-IDG_Switeh. Figure 13 also shows the declaration of input signal
mort_Indicated_Altitude. Because it has no events observable in the specification, it is declared

as a plain variable holding its current value.

#define current0

#define previous 1

bit mon_HDG_Switch [2];

short mon_lndicated_Altitude ;

Figure 13: Declarations of input signals

3.2.2 Modes and Terms

Consider the flight mode signal mode_Right_Director. It is an internal event-observable signal

(see Figure 5). The PROMELA declaration of this signal is presented in Figure 14.
mode_Flight_Director[current] holds the current value of mode_Active_Lateral,

mode_Flight_Director[previous] holds the previous value of mode_Active_Lateral, and

mode_FlightDirector[new] holds the new value of mode_Active_Lateral.

Next, consider mode mode_Active_Lateral. It is an internal event-observable signal because

event @F(mode_Aetive_Lateral=GA) triggers transition 57, Figure 9. The PROMELA

declaration of this signal is presented in Figure 14.

Figure 14 also shows the declaration of term_Selected_Heading. Since no event on this signal is

observed in the FGS specification, we declare it as a two-element array.

15

term_Selected_Heading[current]holds the current value of term_Selected_Heading;
term_Selected_Heading [now'] holds the new value of term Selected_Heading. 1

#define new 2

bitmode_Flight_Director [3];

byte mode_Active_Lateral [3];

#define new'0

shortterm_Selected_Heading[2];

Figure 14: Declarations of internal signals

3.2.3 Controlled Variables

Figure 16 shows the declaration of controlled variable con__Vertical_Arm_Text. This controlled

variable is actually an internal event-observable signal because it is used in a sustaining
condition, as shown in Figure 15. Figure 16 shows the declaration of controlled variable

con_AP Engage_Switch_Lamp. This controlled variable is an output signal, because it is not
used elsewhere, so we declare it as a plain variable.

Initial Value:

Sustaining Condition:

Mode

see value function

con_Vertical_Arm_Text _

con_Vertical_Arm_Color

All Modes White

Figure 15." Definition of con_Vertical_Arra_Ctdor

byte con_Vertical_Arm_Text [3];

short con AP Engage_Switch_Lamp;

Figure 16: Declarations of controlled variables

3.2.4 Event Identifiers and Event-observable Expressions
Consider the definition of event identifier @FD_Pressed, shown in Figure 12. We consider it to
be an abbreviation rather than a real signal. We declare @I'D_Pressed, as shown in Figure 17.

We also introduce a new two-element array identifier for the event-observable expression used in
the definition of @FD_Pressed. The expression exor_FD_Pressed[eurrent] holds the current value
of this expression, and expr_ffD_Pressod[previous] holds its p:'evious value.

We introduce new' in addition to new because an array array[n] in PROMELA is indexed from 0 to n-1.

16

bool @ FD_Prossed;

bool expr_FD_Pressed [2];

Figure 17: Declarations of event identifiers and event-observable expressions

3.2.5 Durations

Consider the Autopilot DISENGAGE submode transition table, shown in Figure 18. It says that

the submode value changes from Warning to Normal as soon as Warning has been

continuously true for 10 seconds. We count the duration in terms of simulation cycles. To get the

real-time duration, one needs to define the duration of one simulation cycle. To measure the

duration, we introduce an auxiliary variable to hold the duration of a particular state. For

example, we introduce variable duration_Autopilot_DISENGAGE_Warning, as shown in Figure 19.

Initially, we set it to 0. We increment it each simulation cycle, provided the value of Autopilot

DISENGAGE submode is Warning. We reset it to 0 as soon as Autopilot DISENGAGE

submode leaves this value.

Id From Events To

11 Warning @T(Duration(INMODE(Warning)) > 10 sec) Normal

Figure 18: Autopilot DISENGAGE submode transition table

int duration_Autopilot_DISENGAGE_Waming;

Figure 19: Declaration of a duration variable

3.2.6 General Structure

The general structure of signal declarations is shown in Figure 20.

/* Monitored variables (see Section 3.2.1) */

... < Contents of Figure 13 >; ...

... < Contents of Figure 22 >; ...
/* Modes and terms (see Section 3.2.2) */

... < Contents of Figure 14 >; ...
/* Controlled variables (see Section 3.2.3) */

... < Contents of Figure 16 >; ...
/* Event identifiers and event-observable expressions (see Section 3.2.4) */

... < Contents of Figure 17>; ...
/* Durations (see Section 3.2.5) */

... < Contents of Figure 19>; ...

Figure 20: General structure of signal declarations

3.3 Signal Initialization
We assume that there are no mutual dependencies between the initial values of different internal

signals. CoRE's signal initialization procedure first assigns random initial values to input signals.

Then it iteratively initializes those internal signals whose initial value expressions have become

defined as a result of the previous initializations. In the absence of mutual dependencies between

the initial values of different internal signals, this iteration terminates so that all the internal

17

signals are initialized. 2 After that, output signals are initialized depending on their sustaining
conditions.

Although there are no mutual dependencies between the initial values of different internal signals
in the FGS specification, the initialization procedure described above does not directly work. The

problem is that sustaining conditions are imposed on some internal signals, and such signals can
therefore be undefined. Note that in CoRE internal signals are always defined (once they are

initialized). Thus we have to consider the semantics of an Landefined value of an internal signal,

and how to calculate CoRE expressions over undefined values. In CoRE this is not a problem,
because only output variables can be undefined, and output variables are not used in expressions.

To represent the undefined value of a signal we use a value out of the signal's range. This very
simple interpretation of undefined values works for the FGS specification. The main technical

problem with undefined values is the evaluation of expressions over partially defined signals.
The only initially undefined signals we found (by applying the procedure above) were some

output signals and flight modes. The output signals are not used in expressions elsewhere in the

specification. An out-of-the-range value of an output signal can be easily recognized as an

exception value. The FGS modes are signals over finite domains. The only atomic expressions
in which modes occur are of the form mode = const or mode #const, where mode is a mode, and

const is a constant in the mode's range. In this context, considering the undefined value of mode
as a value out of the signal's range is appropriate. However, if other atomic expressions over
mode were allowed, it would be problematic to evaluate the expressions over undefined values.

For example, if the domain of mode is ordered, what is the value of the expression mode > const
or mode __const when mode is undefined?

The initial values of the internal and output signals in the PROMELA code are assigned

according to the FGS specification at the beginning of the target PROMELA process. The signals
with constant initial values and with sustaining conditions _,et to "none" are initialized first. Next,

we assign random initial values to input signals. 3 Then we initialize the signals whose sustaining
conditions become defined 4 and valid, and whose initial va]ue expressions become defined as a

result of the previous initializations. We repeat this step until no more signals can be initialized.

In the FGS specification, no initial values of the sustaining conditions depend on the initial values
of the input variables. This results in simple detection of the initially undefined signals, and

simple analytical dependence of the initial values of the "initializable" signals on the initial values

of input signals. The signals that are not initialized at the lxginning of the simulation are assigned
undefined values. The rest of this section provides examples of signal initialization.

3.3.1 Input Signals

We initialize input signals with random values that are within their range. Since PROMELA does

not have such a random number construct, we define macrc,s random1 and ranclom2, Figure 21,

based on the binary representation of natural numbers. Giw_n a signal x over an integer range
[A..B], expression ranclornl (x,A,B) assigns x randomly so tha': A__x__B.

2 Note that in CoRE no sustaining conditions are imposed on internal signals.

3 For the signals represented by arrays, we initialize all the array elements to be the same value.

4 We consider an expression defined as long as all its arguments are defined.

18

int range;
bit digit;
#define random1 (x,A,B) \
range = 1; \
x=0; \
do \
:: if \

:: range > B - A -> break; \
:: else -> if \

:: digit = 0; \
:: digit = 1; \
fi; \
x = 2*x + digit; \
range = 2*range; \

od; \
if \
:: x <= B-A -> x = A + x; \
•" else -> x = A + x- (B-A); \
fi

#define random2(x,A,B) \
random1 (x[current],A,B); \
x[previous] = x[current]

Figure 21: Random number generation

For example, the range of mon_Indicated_Altitude is [-8000..56000]. This signal has no

observable events. Therefore, we initialize it with a random value within its range, as shown in

Figure 22. Now consider binary input signal mon_HDG_Switeh. This is an event-observable

signal. We initialize it using macro random2, as also shown in Figure 22.

random I (mon_lndicated_Altitude,-8000,56000);
random2(mon_HDG_Switch, 0, 1)

Figure 22: Input signal initialization

3.3.2 Initially Defined Signals

Consider the definition of con_AP_Engage_Switch_Lamp, shown in Figure 2.

con_AP_Engage_Switch Lamp is initialized by default as shown in Figure 6. According to

these figures, the initial value of con_AP_Engage_Switch_Lamp depends on the initial value of

term_AP_Engaged, which is defined as follows:

term_AP_Engaged: boolean - mode_Autopilot = ENGAGED.

The initial value of mode_Autopilot is DISENGAGED with no sustaining condition. Thus the

initial value of term_AP Engaged is FALSE, and, according to Figure 2, the initial value of

con_AP_Engage_Switch_Larnp is Unlit. According to the declaration of

con_AP_Engage_Switch_Larnp, shown in Figure 16, we initialize it using macro initl as shown

in Figure 23.

19

Consider signal term_Selected_Heading. Its initial value is men_Heading with no sustaining

condition, and therefore, is a function of an input signal..According to the declaration of

term_Selected_Heading, Figure 14, we initialize it using :nacre init2' as shown in Figure 23. s

#define initl(x,y)

#define init2'(x,y)

#define init3(x,y)

x=y

x[current] = y; x[new'] =y

x[previous] = y; x[current] = y; x[new] =y

initl(con AP Engage_Switch_Lamp, Unlit);

init2'(term_Selected_Heading, men_Heading);

Figure 23: Initializing non-input signals

3.3.3 Initially Undefined Signals

Consider mode_Active_Lateral. According to Figure 5, its initial value is undefined, since the

initial value of modeFlight_Director is OFF with no sus_ning condition. The possible values

of mode_Active_Lateral are ROLL, HDG, NAV, APPR, and GA. In PROMELA, we define

the corresponding constants along with "undefined" constaat BYTE_UNDEF as shown in Figure

24. 6 According to the declaration of mode_Active_Lateral, Figure 14, we initialize it using

macro init3 as shown in Figure 24.

#define ROLL 0
#define HDG 1
#define NAV 2
#define APPR 3
#define GA 4
#define BYTE_UNDEF 255

init3(mode_Active_Lateral, BYTE_UNDEF);

Figure 24: Initializing signals with undefined value

3.3.4 General Structure

The general structure of signal initializations is shown in Figure 25.

Since an array identifierx is equivalent to x[O]in a PROMELAvalue expressior,we use men_Heading ratherthan
men Heading[current] to improve readability.
6

Considering an "undefined" value may result in increasing the size of the signal declaration type and, consequently,the system state

size. However, the effectiveness of the supertrace model checkingalgorithm[6] that we use does not depend on the system state size
itself, but ratheron the number of reachable states.

20

/* Input signals (see Section 3.3.1) */

... < Contents of Figure 22 >; ...

/* Initially defined signals (see Section 3.3.2) */

... < Contents of Figure 23>; ...

/* Initially undefined signals (see Section 3.3.3) */

... < Contents of Figure 24>; ...

Figure 25: General structure of signal initializations

3.4 Expression Translation

3.4.1 Event Expressions

The translation of CoRE events over a binary signal x is presented in Figure 26. We use macros
to facilitate the translation.

CoRE Event PROMELA Translation

@CHANGED(x)

@T(x)

@F(x)

#define current 0

#define previous 1
#define at CHANGED(x) x[current]l= x[previous]
#define at T(x) (Ix[previous]) && x[current]

#define at_F(x) x[previous] && (Ix[current])

Figure 26: Translating events

To translate events over non-variable CoRE expressions, we first translate them into the

equivalent events over binary signals. The translation of the events over expressions with one

binary argument is presented in Figure 27.

CoRE Event CoRE Equivalent

@CHANGED(x = ON) @CHANGED(x)

@CHANGED(x = OFF) @CHANGED(x)

@T(x = ON) @T(x)

@F(x = ON) @F(x)

@T(x = OFF) @F(x)

@F(x = OFF) @T(x)

Figure 27: Equivalent events

To translate CoRE event expressions other than above, we introduce auxiliary PROMELA
variables, as discussed in Section 3.2. Consider an event definition or transition table, which we

denote as CONTEXT, containing an event expression @X(expr). We declare a new PROMELA

variable comp_expr as a binary two-element array, as illustrated in Section 3.2.4. We translate the

event expression @X(expr) as though it were an event expression @X(comp_expr) over binary

21

signal comp_expr. We also precede the translation of CONTEXT with updating comp_exprwith
the translation of expr (see Section 4.2.1).

For example, consider the definition of @FD_Pressed, shown in Figure 12. Its translation is
shown in Figure 28, where oxpr_FO_Pressed and at FD Pressed are declared as discussed in
Section 3.2.4.

at FD Pressed= @T(expr_FD_Pressed);

Figure 28: Translating contexts with complex event expressions

We translate the CoRE event construct event WHEN expr as event &&expr, where event and expr
are the translations of event and expr respectively.

We translate the CONTINUOUSLY expr construct used by the FGS specification designers,
which has no semantics in CORE, as expr, where expr is the translation of expr.

3.4.2 Duration Expressions

We replace DURATION expressions with auxiliary duration variables (see Section 3.2.5). For

example, we translate the expression Duration(INMODE(Warning)) > 10 see (shown in Figure
18) as duration Autopilot_DISENGAGE_Warning> 10. (Here we assume that the duration of one
simulation cycle is 1 second.)

3.4.3 General Expressions

The translation of non-event, "value" expressions to PROMELA is straightforward. We replace a
signal identifier x with x[current].7 We replace CoRE built-in operators with their PROMELA

analogues, e.g., AND with &&,and OR with II. We translate event sub-expressions as described
in Section 3.4.1.

3.5 Table Translation

We translate CoRE function tables using PROMELA non-deterministic if-statements. Consider a

generic function table presented in Figure 29.

model

vail 1

val lk

moden condition/event result

valn_ condt expr

condkval_ exprL

Figure 29: Generic CoRE function table

For a selector table, the condition/event column is omitted For a condition table, all expressions
in the condition/event column are non-event, "value" expressions. For an event table, all

expressions in the condition/event column are event expre,,sions. For a mode transition table,
n= 1, and result= mode_l.

7Since an array identifier x is equivalent to x[0] in a PROMELA value expressiot_, we actually replace x with x rather than x[current]
to improve readability.

22

The translation of the generic table shown in Figure 30 is built from the translations of the table's

expressions as discussed in Section 3.4. The variable part of the translation, result, depends on

the nature of the signal "result." We substitute result[new] for result if result is an internal signal,
and we substitute result otherwise.

If

•' mode_l == val_ _

"' mode_l == val_ _

1 1 && ... && mode_n ==val n 1

&& cond_l -> result = expr_l

1 k&& ... && mode_n == val n k

&& cond_k -> result = expr_k

Figure 30: Translation of the generic CoRE function table

23

4 Translating FGS Specification to PROMELA:
Simulation Cycle

As discussed in Section 3.1, we translate the distributed FGS specification into a single initial

PROMELA process, called the Flight Guidance System Machine (FGSM). FGSM is a loop that
tracks the signal values, where each iteration of the loop corresponds to a tick of real time.
FGSM consists of macro definitions, signal declarations, si,_nal initialization and a simulation

loop. A pass of the FGSM simulation loop consists of four consecutive parts. The first part,
FGSM_I, generates new values for input signals. The second part, FGSM_II, updates the internal

signals according to the input events generated by FGSM_II. FGSM_II is an internal loop that
implements event cascading in the same way as RSML and VHDL. The internal iteration

terminates when all internal events invoked by one-time input events have been processed; but

termination is not guaranteed. The third part, FGSM_III, counts the duration the system stays in
particular states. The fourth part, FGSM_IV, calculates the values of output signals

corresponding to the current values of input and internal signals.

4.1 FGSM_I

In this section, we describe the general format of FGSM_I, the first part of the FGSM loop.
FGSM_I updates the current values of the input signals, s which generates external events that

trigger the iterative computation of new values for internal ,;ignals. (According to [1], we may
assume that different inputs do not change at the same time.) This is accomplished by making

FGSM_I a non-deterministic if-statement that either changes a signal or leaves all signals
unchanged. For example, consider input signal mon_Indieated_Altitude, described in Section
3.3.1. The branches of the if-statement generating a new value for mon_Indieated_Altitude are

shown in Figure 31. This method simulates the continuity of the original physical signal.
FGSM_I also resets the value of the event cascading flag stable2, as explained in Section 4.2.3.
The general format of FGSM_I is shown in Figure 31.

if
:: skip;
...<Branches for other input signals>; ...
:: mon_lndicated_Altitude[eurrent] > -8000 -> mon_lndicated_Altitude[eurrent]--;
:: mon_lndicated Altitude[current] < 56000 -> mon_lndicated_Altit Jde[current]++;

...<Branches for other input signals>; ...
fl;
/* Initializingstable2*/
stable2= FALSE;

Figure 31: General format of FGSM_I

4.2 FGSM_II
In this section, we describe the general format of FGSM II, the most complex part of the FGSM

loop. FGSM_II simulates event cascading. FGSM_II is an internal cycle consisting of six
consecutive parts with the following functionality:

s The previous values of input signal are updated by FGSM_II.

24

1. Update auxiliary variables corresponding to complex event-observable expressions (see

Section 3.4.1).

2. Check whether any auxiliary variable changes its value.

3. Check whether any internal event has been generated in the previous iteration (see Items 2,

5); and quit the cycle if no such events are observed.

4. Calculate the new values for the internal signals and event identifiers.

5. Check whether any internal signal changes its value.

6. Update internal signals and input signals.

The iterative updating of internal signals by FGSM_II corresponds to the causal sequencing of
simultaneous events. An event cascading mechanism depends on the order of internal signal

updating. In our implementation, we first consider the internal events immediately generated by

an external event; we then consider the internal events immediately generated by these events;

and so on. This kind of signal cascading is also implemented in CSML, VHDL, and Verilog.
One may consider a different order of event cascading as in, e.g., Statecharts, [13] to get, in

general, different semantics.

We discuss the parts of FGSM II in the rest of the section.

4.2.1 Updating Complex Event-observable Expressions
As noted, we consider the identifiers of complex event-observable expressions as shorthands.
Their values are based on the current values of "real" signals and should be computed before

being used elsewhere. These values are used first to check for the absence of internal events (see
Sections 4.2.2, 4.2.3). Figure 32 shows the updating of the expression identifier expr_FD_Pressed

(see Section 3.2.4, 3.4.1). The order of updating different complex expressions is irrelevant.

#update2(x) x[previous]= x[current]
update2(expr__FD_Pressed);
expr_FD_Pressed[current]= (mort FD_Switch_left= ON II mon FD Switch_right= ON);
Figure32: Updating a complex event-observableexpression

4.2.2 Checking on the Changes of Complex Event-observable Expressions
A change of a value of a complex event-observable expression reflects changes of values of
"real" signals that occurred in the previous cycle. We introduce boolean variable stable1 to check

for the stability of complex event-observable expressions. We calculate its value as shown in

Figure 33.

25

#define stablel?(x) x[current] == x[previous]

stable1 = < conjuncts for the other complex event observable expressions >
&& stablel?(expr_FD_Pressed)

&& < conjtmcts for the other complex event-observable expressions >;

Figure 33: Checking on the changes of complex event-observable expressions

4.2.3 Checking on the Absence of Intemal Events

Internal events consist of those generated by complex event-observable expressions and those

generated by internal signals. To check for the absence of the events generated by internal

signals, we introduce a Boolean variable stable2. The variable stable2 is assigned FALSE before

entering FGSM_II. It is reassigned after computing the new values of internal signals (see

Section 4.2.5). We exit the cycle when both stable1 and stable2 become TRUE, as shown in Figure
34.

if

:: stable1 == TRUE && stable2 == TRUE -> break;
:: else -> skip;
fi

Figure 34: Checking on the absence of internal events

4.2.4 Calculating New Values for Internal Signals and Event Identifiers

4.2.4.1 Event Identifiers

As discussed in Sections 3.2.4 and 3.4.1, we consider event identifiers as abbreviations. The

values of event identifiers should be computed before they are used elsewhere. An example of
updating an event identifier is shown in Figure 28.

4.2.4.2 Internal Event-observable Signals

Consider signal mode_Active_Lateral. Figure 8 represenls its mode transition table, and Figure

5 shows its initial value with its sustaining condition. The part of FGSM_II corresponding to the

mode transition table is an if-statement presented in Figure 35. The translation is performed as
discussed in Section 3.5. We define some additional macros to facilitate the translation. Note

that if none of the transitions takes place, skip is executed. The complete functionality of

mode_Active_Lateral, including the sustaining condition, is shown in Figure 36.

#define at_T(x,y) x[previous] I= y && x[current] == y

#define at_F(x,y) x[previous] == y && x[current] l= y
if

/*20*/:: mode_Active_Lateral == HDG &&

at_HDG_Switch_Pressed->

/'21 */:: mode_Active_Lateral == NAV &&

at_NAY_Switch_Pressed ->

/*22*/:: mode_Active_Lateral == NAV &&

at_NAV_Source_Change ->

mode_Active_Lateral[new] = ROLL;

mode_Active_Lateral[new] = ROLL;

mode_Active_Lateral[new] = ROLL;

/*23*/:: mode_Active_Lateral == APPR &&

at_APPR_Switch_Pressed ->

mode_Active_Lateral[new] = ROLL;

/*24*/:: mode_Active_Lateral == APPR &&

at NAV_Source_Change->

/'25"/:: mode_Active_Lateral == GA &&

at_T(term AP Engaged)->

/*26*/:: mode_Active_Lateral == GA &&

at_T(term_SYNC) ->

/*27*/:: mode_Active_Lateral == GA &&

mode_Active_Lateral[new] = ROLL;

mode_Active_Lateral[new] = ROLL;

mode_Active_Lateral[new] -- ROLL;

at F(mode_Active_VerUcaI,GA)->

mode_Active_Lateral[new] = ROLL;

at_HDG_Switch_Pressed ->

at_NAV_Switch_Pressed ->

mode_Active_Lateral[new] = HDG;

mode_Active_Lateral[new] : NAV;

at_APP R_Switch_Pressed ->

mode_Active_Lateral[new] = APPR;

/'28"/:: mode_Active_Lateral != HDG &&

/*29*/:: mode_Active_Lateral I= NAV &&

mode_Active_Lateral[new] = GA;

/*30*/:: mode_Active_Lateral != APPR &&

/'31"/:: mode_Active_Lateral[current] l= GA &&
at GA Switch_Pressed->

:: else -> skip;
fi

Figure 35: Calculating the new value for an internal event-observable signal

if

:: mode_Flight_Director == OFF -> mode_Active_Lateral[new] = BYTE_UNDEF;

:: at_T(mode_Flight_Director) -> mode_Active_Lateral[new] = ROLL;

:: else -> <contents of Figure 35>

fi

Figure 36: Representing a sustaining condition

4.2.4.3 Internal Signals with No Observable Events

Consider the term_Selected_Heading (see Section 3.2.2). Its new value, corresponding to the

CoRE definition in Figure 3, is calculated as shown in Figure 37. We represent the previous

value of the expression term_Selected_Heading by the current value term_Selected_Heading,

because the notion of "previous" is relative.

27

If

•' @ HDG_Knob_Changed -> term_Selected_Heading[new'] =

MOD(term_Selectect_Heading+term_HDG_Knob_Rotation,360)
•" else -> skip
fi

Figure 37: Calculating new value for an internal signal with no observable events

4.2.5 Checking on the Changes of Internal Signals
To check for the absence of the changes to internal signals, we use variable stable2. FGSM_II

assigns stable2, as shown in Figure 38. Unlike the case of complex event-observable expressions
(cf. Section 4.2.2), here we monitor the "real" signal events that happen in the current event

cascading cycle. Hence the difference between the definitions of stable2? and stable2'?, Figure 38,
and stable1?, Figure 33.

#define stable2?(x) x[new] == x[current]

#define stable2'?(x) x[new'] == x[current]

stable2 = < conjuncts for the other internal signals >

&& stable2 (mode_Active_Lateral)

&& stable2'?(term_Selected_Heading)

&& < conjuncts for the other internal signals >;

Figure 38: Checking the stability of the internal signals

4.2.6 Updating Input Signals and Internal Signals

Figure 39 shows examples of updating signals of different types. Because no new values for

input signals are generated by FGSM_II, it is sufficient to ttpdate the previous values of input
signals just at the first iteration. Thus, no external events a:e observed for the rest of the
FGSM_II iterations.

#update3(x) x[previous] = x[current]; x[current] = x[new]
#update2'(x) x[current] = x[new']

/* Updating input event-observable signals */
update2(mon_HDG_Switch);

/* Updating intemal event-observable signals */
update3(mode_Active_Lateral);

/* Updating internal signals with no observable events */

update2'(term_Selected_Heading);

Figure 39: Updating input signals and internal signals

4.2.7 General Format of FGSM_II

The general format of FGSM_II iteration-is presented in Figure 40.

2.8

/* Updatingcomplexevent-observableexpressions(see Section4.2.1) */
... < Contents of Figure 32 >; ...

/* Checkingonthe changesofcomplexevent-observableexpressions(see Section4.2.2) */
... < Contents of Figure 33 >; ...

/* Checkingon the absenceof internal events(see Section 4.2.3) */
... < Contents of Figure 34 >; ...

/* Computingnewvaluesfor internalsignalsand eventidentifiers(see Section4.2.4) */
... < Contents of Figure 35 >; ...
... < Contents of Figure 37 >; ...

/* Checkingthestabilityof internalsignals(see Section4.2.5) */
... < Contents of Figure 38 >; ...

/* Updatinginputsignalsand internalsignals(see Section4.2.6) */
... < Contents of Figure 39 >; ...

Figure40: Generalformat of FGSM_H

4.3 FGSM_III
In this section, we describe the third part of FGSM simulation cycle, FGSM_III, which updates
the duration variables that store how long the system has stayed in particular states. For example,

consider Figure 18, representing the Autopilot DISENGAGE submode transition table. The

corresponding duration variable duration_Autopilot_DISENGAGE_Wamingis updated as shown in

Figure 41. Figure 41 also represents the general format of FGSM_III.

...<if-statements for other duration variables>;...
if
:: mode_Autopilot_DISENGAGE == Warning -> duration_Autopilot_DISENGAGE_Waming++
:: else -> duration_Autopilot_DISENGAGE_Waming = 0
fi;
...<if-statements for other duration variables>;...

Figure 41."Generalformat of FGSM_IH

4.4 FGSM_IV
In this section, we describe the general format of FGSM_IV, the fourth part of the FGSM loop. It

updates the output signals. Consider con_Vertical_Arm_Color, shown in Figure 15. The part
of FGSM_IV generating a new value for this variable is shown in Figure 42, where
SHORT_UNDEF is defined outside the color range of con_Vertical_Arm_Color. FGSM_IV is

the sequence of such statements for all the output signals. The order of the statements is
irrelevant.

29

...<if-statements for other output signals>;...
if

:: con_Vertical_Arm_Text[current] == EMPTY_STRING ->

con_Vertical_Arm_Color = SHORT_UNDEF;

::else -> con_Vertical_Arm_Color= White;
fi

...<if-statements for other output signals>;...

Figure 42: General format of FGSM_IV

4.5 FGSM: General Format

The general format of FGSM is shown in Figure 43. The d-step statements are inserted to
facilitate model checking, as explained in Chapter 7. Figure 43 also includes some code related

to the validation of the system properties as explained in Chapter 5.

Init

{
d_step{

/* Signal declaration (see Section3.2) "/
< Contents of Figure 20>;

/* Signal initialization (see Section 3.3) */

< Contents of Figure 25>;
};
f* end d_step */
do::

/* Checking on the absence of stuttering (seeSection5.5) *1
skip;progress:

P Updating Input signals (see Section4.'1)*/
< Contents of Figure 31>;
d_step{

P Updating Internal signals (see Section4.2) *1
do::

< Contents of Figure 40>;
od ;

/* Updating durations (see Section4.3) */
< Contents of Figure 41>;

/* Updating output signals (see Section4.4) */
< Contents of Figure 42 >;

P Checking invarlants (see Section5.3) */
...< Contents of Figure 46>; ...
};
/* end d_step */
od
}

Figure 43: General format of FGSM

30

5 Formalizing the Required Properties

5.1 Completeness
The completeness of a CoRE specification is determined by the completeness of its selector and

condition tables. We implement selector and condition tables as PROMELA if-statements, so

that the completeness of a selector/condition table corresponds to the absence of deadlock. For

example, con_AP_Engage_Switeh_Lamp is defined as shown in Figure 44. If this definition

were incomplete, a deadlock would occur because there is no else branch in the if-statement.

If

:: ! term AP Engaged -> con AP Engage_Switch_Lamp = Unlit
:: term AP Engaged-> con AP Engage_Switch_Lamp = Lit
fi

Figure 44: Representation of a condition table

To check for deadlocks we use the additional run-time option -q in SPIN verification.

5.2 Consistency
Consistency of a CoRE specification is determined by the consistency of its event and condition

tables. Consider the event table shown in Figure 44. To check its consistency, we introduce

counter COUNT_term AP Engaged, set to 0 before control is passed to the table. We also precede

the table with the sequence of if-statements incrementing COUNT_ term AP Engaged if a transition

of the table can be triggered as shown in Figure 45. Then the consistency of the table is

expressed by the statement that COUNT Active_Lateral <= 1.

COUNT_term AP Engaged = O;
if

:: !term AP Engaged-> COUNT_term AP Engaged ++;

:: else -> skip;

fi;
if

:: term AP Engaged-> COUNT term AP Engaged ++;

:: else -> skip;
fi;

assert(COUNT_term AP Engages <= 1);

Figure 45: Checking on consistency of a condition table

We add such counters for each event or condition table.

5.3 Invariants
Invariants are translated into assert statements at the end of the FGSM cycle (see Figure 43). For

example, invariant INV-1, shown in Figure 7, is translated as shown in Figure 46.

31

assert(mode_Active_Lateral I= GA II mode_Autopilot = DISFNGAGED) /
J

Figure 46: Invariant translation

5.4 Unreachable Transitions

The SPIN model checker reports unreachable transitions as unreachable lines of code.

5.5 Stuttering
Stuttering prevents real-time system implementation. In our PROMELA model, stuttering

corresponds to infinite iteration of the internal FGSM_II cycle. To check for the absence of

stuttering, we put a progress label at the beginning of the external FGSM cycle (see Figure 43).

A progress label indicates that this control point should be reached infinitely often. An infinite

iteration of the internal FGSM_II cycle would contradict this requirement.

32

6 State Space Reduction

The huge state space of the FGS specification makes a direct validation by model checking

impossible. State explosion is a common model-checking problem [6,14]. The state space
reduction techniques that we used to make the model checking feasible are

1. The supertrace algorithm for state exploration,

2. Multiple hashing,

3. Introducing d_stepstatements, and

4. Input signal abstractions.

Our translation is already optimal because it is a single PROMELA process, which makes

reduction techniques related to process interleaving, such as partial order reduction, unnecessary

[6]. The state reduction techniques for eliminating irrelevant entries [14] do not work for the
FGS specification, because the flight modes are mutually dependent. In the rest of this section we

describe the techniques we did use.

6.1.1 The $upertrace Algorithm
The model-checking strategy of SPIN requires it to generate the set of all reachable states. The
states are accumulated in accordance with the control flow of the analyzed program. The main

problem is to determine whether a current state has been already reached. The supertrace

algorithm [6] uses random number coding of states. The generated numbers are stored in a hash
table. When a state is analyzed, its number is first compared to those already stored in the hash

table. If the number is new, so is the state; and the state' s properties are analyzed. Otherwise, the

state is considered already analyzed and another search branch is chosen by backtracking. As two
different states may have the same encoding, there is a chance that some states may be not

analyzed. Thus, the supertrace method is not exhaustive--it can find errors, but not guarantee
correctness. Let S be the number of the analyzed states, and N be the number of possible state

encodings determined by the size of the hash table. As S/N _ 0 the supertrace method

approaches fully exhaustive search.

6.1.2 Multiple Hashing
A hash function that generates state numbers is a parameter of the supertrace algorithm. In the

partial supertrace search, different hash functions will result in coverage of different parts of the

state space. Therefore, running the supertrace algorithm with different hash functions increases
the state space coverage. We ran the supertrace algorithm with 32 built-in hash functions.

6.1.3 Using d_step Statements
The d_step statement introduces a deterministic sequence of code that is executed indivisibly [8].

No states are saved, restored, or checked within a d_step sequence. Therefore, the spurious state
explosion due to control flow over deterministic code is eliminated. The only non-deterministic

33

part of FGSM is supposed to be the FGSM_I, which updates the values of input signals. 9 We

insert the dstep statements accordingly (see Figure 43).

6.1.4 Input Variable Abstraction
We reduce the number of reachable states by decreasing the ranges of inputs while preserving the

validity of the verified properties. Consider, for example, input signal man VS Pitch_Count.
Its range is [0..255]. However, only the event @CHANGED(mort VS Pitch_Count) is used to

control flight modes; the actual value of man VS Pitch_Count is used just to control output

variables. Since we are not interested in the properties of the output variables, we can treat
mon_VS_Pitch_Count as a binary input signal. Some of the input signals, like

men_Indicated_Altitude, are irrelevant to the mode logic, and can be removed from the

specification altogether. Proceeding in this way, we modified 12 out of 30 input signals as shown
in Figure 49.

Abstracting mon_Indicated_Airspeed (shown in Figure 49, Item 2) is a bit different. The only

place that mon_Indicated Airspeed influences the flight mode values is in the
mode_Overspeed transition table, shown in Figure 47. The: expression term_Vmo is actually an

aircraft specific constant. Assuming that 0 <_term_Vmo _ 512, the range of

mon_Indicated_Airspeed breaks into three intervals: [0.. term_Vmo], [term_Vmo.. term_Vmo
+ 10], and [term_Vmo +10..512]. Within each interval, the actual value of

mon_Indicated_Airspeed is irrelevant. Therefore, we reduce the range of

mort_Indicated_Airspeed to [0..2], a value for each interval, and modify the mode_Overspeed
transition table, as shown in Figure 48

ld

1

From Events To

SPEED_OK @T(mon_Indicated_Airspeed > (term Vmo +10) AND TOO_FAST
NOT term_Above_Transition_Altitude)

SPEED_OK @T(mon_Indicated_Mach_Number > (term_Mmo + 0.03) TOO_FAST
AND terrn_Above_Transition_Altitu&')

TOO_FAST @T(mon_Indicated_Airspeed <terrn Vmo AND NOT SPEED_OK

termAboveTransition_Altitude)

TOO_FAST @T(mon_Indicated Mach_Number <_term MmoAND SPEED OK

term_Above_Transition_Altitude)

Figure 47: raade_Overspeed transition table

From Events To

SPEED_OK @T(mon_Indicated_Airspeed = 2 AND NOT TOO_FAST
term_AboveTransition_Altitude)

SPEED_OK @T(mon_Indicated_Mach_Number > (term_Mmo + 0.03) TOO_FAST
AND term_Above_Transition_Altitude)

Id

1

2

9 We check on the determinism of the other code, as discussed in Section 5.2.

34

3 TOO_FAST

4 TOO_FAST

@T(mon_Indicated_Airspeed = 0 AND NOT
term_Above_Transition_Altitude)

@T(mon_Indicated_Mach_Number < term_Mmo AND

term_Above_Transition_Altitude)

SPEED_OK

SPEED_OK

Figure 48: Modified mode_Overspeed transition table

Removing the irrelevant input signals from the specification is considered in [14]. However,

reducing input signal ranges is not considered there.

1

2

3

4

5

6

7

8

9

10

11

Signal Original range Modified range

mon VS Pitch_Count [0..255] [0..1]

mon_Indicated_Airspeed [0..512] [0..2]

mon_Indicated_Altitude [-8000..56000] Removed

mon_Pressure_Altitude [-8000..56000] [0.. 1]

mon_Roll_Angle [- 180.. 180] [0.. 1]

mon_Pitch_Angle [-90..90] Removed

mon_Vertical_Speed [-32.8..32.7] Removed

mon_Heading [0..359] Removed

mon_Nav_Source_Frequency_VNR [108.. 136] [0.. 1]

mon HDG_Count [0..255] Removed

mon_Speed_Count [0..255] Removed

Figure 49: Input signal range modifications

35

7 Validation Results

Since the supertrace algorithm is a partial search algorithm, the absence of errors in the supertrace
validation does not necessarily indicate the absence of errors in the system. On the other hand,

errors found with the supertrace algorithm are definitely present. Our analysis found
specification errors of different severity: typos, unreachable transitions, and invariant violations.

7.1.1 Typos

Two typos detected by the PROMELA syntactic analyzer were undeclared variables (Figure
50). 10

Item Typo Correction

Section A.9.2.2.1 @NAV_Source_Changed @Nav_Source_Changed

INV-4 term On Ground mon On Ground

Figure 50." Typos detected

7.1.2 Unreachable Transitions

Consider the mode_Active_Vertical/FLC transition table, shown in Figure 51. Transition 60 was
reported as unreachable code for the following reason. According to the definition of

term_Overspeed, Figure 11, term_Overspeed changes just one event-cascading microcycle

after mode_Overspeed changes. The mode_Overspeed transitions are triggered just by input
events. Thus, @T(term_Overspeed) can be true just at the third microcycle. On the other hand,

according to Figure 9, mode_Active_Vertical can go to FLC either by transition 50 at the first

microcycle, or by transition 52 at a microcycle just after one with true term_Overspeed. Thus,
@T(mode_Active_Vertieal = FLC) can be true either at tile second microcycle, or after the third
microcycle. Therefore, condition @T(mode_Active_Vertieal = FLC) AND
@T(term_Overspeed) is never true.

Id

58

59

60

61

From

Entered

Overspeed

Even_

@T(mode_Active_Vertical = FLC) AND

NOT @T(term Overspeed)
@F(term_Overspeed)

To

Track

Track

Entered @T(mode_Active_Vertical = FLC) AND @T(term_Overspeed) Overspeed

Track @T(term_Overspeed) Overspeed

Figure 51: Flight level change submode transition table

A possible solution is to return to the previous version of the FGS specification [15] where

term_Overspeed is used in Figure 51 instead of @T(term_Overspeed).

to The specification has undergone several manual inspections by its developers.

7.1.3 Invariant Violations

7.1.3.1 INV-7
We detected a violation of INV-7:

mode_Active_Lateral = APPR/Track _ term_Selected_Nav_Type _ {LOC, FMS }

term_Selected_Nay_Type is defined by the following condition table:

Conditions term_Selected_Nay_Type

mon_Selected_Nav_Source = FSM<N> FMS

mon_Selected_Nav_Source = VNR<N> AND VOR

mon_Nav_Source_Signal_Type<VNR<N>> = VOR

mon_Selected_Nav_Source = VNR<N> AND LOC

mon_Nav_Source_Signal_Type<VNR<N>> = LOC

Figure 52: Definition of term_Selected_Nay_Type

The error trace starts from a state where

1. mode_Active_Lateral = APPR/Track

2. mon_Selected_Nav_Source = VNR<N>

3. mon_Nav_Source_Signal_Type<VNR<N>> = LOC.

According to Figure 52, term_Seleeted_Nav_Type I= LOC in the state, so INV-7 initially holds.
At the next simulation cycle, let mon_Nav_Source_Signal_Type<VNR<N>> changes to VOR.
According to Figure 52, term_Selected_Nay_Type change from LOC to VOR. However,
mode_Actlve_Lateral remains the same, while it should not. The error is possibly because the

change of term_Selected_Nay_Type does not invoke event @NAV_Souree_Change triggering
transition 24, shown in Figure 8.

@NAV_Source_Change is defined as shown in Figure 53. The error is easy to fix by redefining
@NAV_Source_Change as shown in Figure 54.

37

@Nav_Source_Change: event ---@CHANGED(mon_Selected_Nav_Source) OR

(@CHANGED(mon_Nav_Source_Frequency<mon_Selecl ed_Nav_Source>)

WHEN term_Selected_Nav_Type c {VOR, LOC })

Figure 53: Definition of @Nav_Source_Change

@Nav_Source_Change: event - @CHANGED(mon_Selected_Nav_Source) OR

((@CHANGED(mon_Nav_Source_Frequency<mon_Sele,:ted_Nav_Source>)

OR @CHANGED(mon_Nav_Source_Si_,aaal_Type<VNR>))

WHEN term_Selected_Nav_Type e {VOR, LOC })

Figure 54: Modified definition of @Nav_Source_Change

7.1.3.2 INV-9

We also detected a violation of INV-9:

mode_Altltude_Select = ACTIVE ¢:, mode_Active_Vertical=ALTSEL

The altitude select ENABLED submode transition table is shown in Figure 55.

Id From

64 ARMED

65 ACTIVE

Events To

ACTIVE@T(term_ALTSEL_Cond = Capture AND

Duration(INMODE) > const min armed_period)

@F(mode_Active_Vertical _ {APPR, GA, ALTHOLD, ALTSEL}) ARMED

Figure 55: Altitude select ENABLED submode i'ransition table

The error trace starts from a state where

1. mode_Altitude_Select = ARMED,

2. mode_Active_Vertical = FLC,

3. The events triggering transition 46, in Figure 9, and transition 64, in Figure 55, occur.

The error trace is shown in Figure 56. The event triggering l:ransition 46 is input event
@ALT_Switch_Pressed. The event triggering transition 64 is internal event

@T(term_ALTSEL_Cond = Capture AND Duration(INMODE) >

const_rnin_armed_period). Therefore, the error trace doe:; not violate the FGS assumption
about admissible simultaneous events (see Section 4.1). This assumption is really an assumption
of determinism. In the situation above, determinism is maintained, but an invariant is violated.

We do not see an obvious way to correct the problem. Several ways to handle simultaneous
events are discussed in [1]. In any case, the discussed violation is an inherent feature of the

system functionality and should be resolved by the specific,ttion designers. We have reported all
of the detected errors to the developers of the FGS specification.

38

mode_Altitude_Select mode_Active_Vertical

ARMED

Transition64

ACTIVE/Capture

Transition63

CLEARED

Transition 62

ARMED

None

FLC

Transition 46

ALTHOLD

Transition 43

ALTSEL

None

ALTSEL

None

Figure 56: An error trace

8 Conclusion

8.1 Project Results
The project has achieved the following results:

1) We developed a technique for translating the extended CoRE formalism (including event

cascading, continuous events and partially defined internal signals) into PROMELA, the
input language of SPIN. The translation is optimal for model checking because

a) The resulting specification consists of a single PROMELA process, which consequently
has no interleaving,

b) The deterministic part of the target code (all but the generation of the input signal values)
can be treated as a d-step, eliminating the state explosion due to the internal control flow.
This assumes that the CoRE specification is consistent.

2) Within the PROMELA model we represented certain basic CoRE requirements:

a) Completeness,

b) Consistency,

c) Invariants,

d) The absence of unreachable transitions, and

e) The absence of stuttering.

3) We applied the advanced state-space reduction techniqaes in handling the large state space of
the FGS specification, in order to make the model checking feasible:

a) The supertrace algorithm,

b) Multiple hashing, and

c) Input variable abstraction.

4) As a result, we detected several specification errors of different degrees of importance:

a) Typos,

b) Unreachable transitions, and

c) Invariant violations, including an intricate one due to unexpected simultaneous events.

8.2 Directions For Future Work

We propose the following directions for future work:

4O

1)

2)

3)

Implement a translator from CoRE to PROMELA, based on the translation techniques we
have developed,

Develop new methods of state space reduction, and

Translate the FGS specification into RSML, Verilog, or VHDL, and validate it using related

state exploration methods. An especially interesting possibility is to use symbolic model

checking procedures based on binary decision diagrams [16]. In many cases these procedures
can exhaustively analyze models with state spaces much bigger than those analyzed by
traditional methods.

41

. Steven P. Miller and Karl F. Hoech. Specifying the Mode Logic of a Flight Guidance System
in CORE, Version 1.1. Technical Report, pp. 109. Collins Commercial Avionics, Rockwell

International, June 17, 1997.

2. David Hughes and Michael Dornheim. Automatic Cockpits: Who's in Charge? : Parts I & II.

Aviation Week & Space Technology, January 30 - February 6, 1995.

, Stuart R. Faulk, Lisa Finneran, James Kirby, and Assad Moini. Consortium Requirements

Engineering Guidebook. Technical Report SPC-920600-CMC, Software Productivity
Consortium, Herndon, VA, December, 1993.

. The VIS Group. VIS: A system for Verification and Synthesis. In the Proceedings of the 8th

International Conference on Computer Aided VerificaHon, pp. 428-432, Springer, Lecture

Notes in Computer Science 1102. Edited by R. Alur gad T. Henzinger, New Brunswick, NJ,
July 1996

5. FormalCheck TM Home. http://www.bell-labs.com/project/formalcheck/index.html

6. Gerard J. Holzmann. Design and Validation of Compu',er Protocols. Prentice Hall, 1991.

7. CV: A Model Checker for VHDL. http://www.cs.cmu.edu/-modelcheck/cv/project.html

8. On-The-Fly, LTL Model Checking With SPIN.

http://www.netlib.no/netlib/spirdwhatispin.html

, Nancy G. Levenson, Mats P.E. Heimdahl, Holly Hildreth, Jon D. Reese. Requirements

Specification for Process-Control Systems. In IEEE Transactions on Software Engineering,

vol. 20, no. 9, pp. 684---107, 1984.

10. IEEE Standard VHDL Language Reference Manual. [EEE Std 1076-1993, IEEE Standards,
1994.

11. Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, 1991.

12. Mats P.E. Heimdahl and Nancy Leveson. Completene:_s and Consistency Analysis of State-

Based Requirements. In IEEE Transactions on Softwate Engineering, May 1996.

13. D. Harel. Statecharts: A visual formalism for complex _ystems. Science of Computer

Programming, 8, pp. 231--274, 1987.

14. Ramewsh Bharadwaj, Constance Heitmeyer. Verifying SCR requirements specifications
using state explorations. In Proceedings of the First A CM SIGPLAN Workshop on Automatic

Analysis of Software, January 1997.

15. Steven P. Miller and Karl F. Hoech. Specifying the mc_te logic of a flight guidance system in
CORE. Technical Report, pp. 107. Collins Commercial Avionics, Rockwell International,

April 4, 1997.

42

16. Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan, David L. Dill.

Symbolic model checking for sequential circuit verification. In IEEE Transactions on

Computer-aided Design of Integrated Circuits and Systems, vol. 13(4), 1994.

43

Appendix

A Implementing Event Broadcasting in PROMELA

In this section, we discuss how to formalize triggering-processes-by-event-broadcasting in
PROMELA. The discussion suggests that a feasible formalization would require N global

variables, where N is the sum of the lengths of the sensitivity lists of the running processes.

Consider a CoRE specification consisting of three classes, ,4, B, and C, tracking integer signals x,
y and z respectively. Let x be a randomly generated input signal, y=x+l, and z= z -1. A naive

formalization of classes A, B and C as concurrent PROMELA processes would look as follows:

bit x, y;

proctype A ()

{
do
::x=O

::x=l
od

}
proctype B ()

{
do
::y=x-1
od
proctypeC ()
{
do

:: z = x+l

od
}
init {run AO;run BO; run cO}

However, this program is not adequate to the given specification because of the following
program trace:

0 2 3 1...

0 0 2 2...

0 3 3 3...

Figure 57: A program trace

This trace shows that processes A, B and C run asynchronously, and sharing domain variable x

does not enforce their synchronization. One possible way to enforce the synchronization is to

introduce a flow control flags x in B and x in C corresponding to the sensitivity list of the
running copies of B and C as follows:

44

bit x, y;
bool x_in_B, x_in_C;

proctype A ()
{
do
::x in B&&x in C->

if
::x=O
::x=l

fi

x in B=O;
x in C=O;

od

}
proctype B ()
{
do

::x in B->y=x-1;x in B=O
od

}
proctype C 0
(
do

::x in C->z=x+l;x in C=O
od

}
init {run AO; run BO; run cO}

In general, we introduce one control flag for each signal in the sensitivity list of a process, for

each running copy of the process. (This means that we would also have to distinguish the

declarations of the running copies of a process.) Using channels for process synchronization

seems even less efficient since it would also require additional variables to read from the

channels. Even assuming that a final implementation of the CoRE specification has explicit flow

control, it is reasonable to avoid it on the early stages of design as a source of additional errors.

45

REPORT DOCUMENTATION PAGE FormARxoved
OMB No. 0704-0188

P__nS_9___ ng_bur_=_, for,_is__of Info_. !s e_lted, to aver'age 1_hour per .I.l.l.l.l.l.l.l._,,ncl_udlngthe time for reviewing Insb-ucUons,searching e0dstlngdma sources,

.... _._._..,u_o..m_,,._r_u_,=ng=__sug_easor_,,.,._ mOuc____m_ Du_en, Io wMn,ngton rleacX[uarters Services, Directorate for Information Oper'a_ons and Reports, 1215 Jeflenmn
_.., _._ _=y, ou,w • _u-*, *v,,,xj=_l. v_ _u_-q_u_, arm m me unme m Management and Budget Papemmrk Reduction Project (07044)188), Washington, OC 20503.

1. AGENCY USE ONLY (Leave blank) _ 2. REPORT DATE

I June 1998
4. TITLE AND Sbts z I I LIE

Flight Guidance System Validation using SPIN

6. AUTHOR(S)

Dimitri Naydich and John Nowakowski

7. PERFOR_;;NG ORGANIZATION NAME(S) AND ADDRESSEES)

Odyssey Research Associates
Cornell Business & Research Park

33 Thornwood Drive

Ithaca, NY 14850-1250

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23681-2199

11. SUPPLEMENTARYhoi,-S

Langley Technical Monitor: Ricky W. Buder
Final Report, Task 7

3. REPORTTYPEANDDATESCOVEREDContractor Report
5. FUNDINGNUMBERS

522-33-314)1

NAS 1-20335

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR- ! 998-208434

12a. Di_imBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 59 Distribution: Standard

Availability: NASA CASI (301) 621-0390

13. AE_¥_ACT (Maximum 200 words)

To verify the requirements for the mode control logic of a Flight Guidance System (FGS) we applied SPIN, a

widely used sofware package that supports the formal verification of distributed systems. These requirements,
collectively called the FGS specification, were developed at Rockwell Avionics & Communications and

expressed in terms of the Consortium Requirements Engineer, ng (CORE) method. The properties to be verified

are the invariants formulated in the FGS specification, along with the standard properties of consistency and
completeness. The project had two stages. First, the FGS specification and the properties to be verified were

reformulated in PROMELA, the input language of SPIN. This involved a semantics issue, as some constructs

of the FGS specification do not have well-defined semantics in CORE. Then we attempted to verify the

requirements' properties using the automatic model checking facilities of SPIN. Due to the large size of the state

space of the FGS specification an exhaustive state analysis with SPIN turned out to be impossible. So we used

the supertrace model checking procedure of SPIN that provides for a partial analysis of the state space. During
this process, we found some subtle errors in the FGS specification.

14. SUBJECTTERMS

Formal Methods, Software Verification, Flight Guidance, Model Checking

17. SECUre/Y CU6SIRCATION
OF REPORT

Unclassified

18. SECU_iTlf CLASSIRCATICN
OF THB PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIRCATION
Of _ABSTRACT

Uilclassified

15. NUMBER OF PAGES

50
16. PRICE CODE

A03
20. UMITATION

OF ABSTRACT

Standard Form 298 (Rev. 2-89
Prescribed by ANSI Std. Z-39-18
296-102

